আমার প্রশ্ন, ইউক্লিডের উত্তর।মৌলিক সংখ্যার অসীমত্ত মৌলিক সংখ্যা মৌলিক সংখ্যার অসীমত্ত
Share
বন্ধুরা, আবারো ফিরে আসলাম মৌলিক সংখ্যা নিয়ে কিছু কথা বলতে। মৌলিক সংখ্যা বা প্রাইম নাম্বার কি? সহজ কথায় যে সকল সংখ্যাকে 1 এবং সেই সংখ্যাটি ছাড়া অন্য কোনো সংখা দিয়ে ভাগ করা যায় না তাকেই বলে মৌলিক সংখ্যা বা প্রাইম নাম্বার। যেমন- 2,3,5,7,11…….একটা ব্যাপার খেয়াল করবেন, শুধু 2 ছাড়া অন্য সব প্রাইম নাম্বার বিজোর এবং এটাই সবচেয়ে ছোট প্রাইম নাম্বার। আর যে সংখ্যা গুলো প্রাইম নয় তাদেরকে বলা হয় যৌগিক বা কম্পোজিট (Composite) নাম্বার। যেমন- 4,6,8,9,10,12…… সকল যৌগিক বা কম্পোজিট নাম্বারকে মাত্র একভাবেই প্রাইম নাম্বার দ্বারা প্রকাশ করা যায়, যেমন- 12=22*3. অন্য কোনো ভাবে চাইলেও 2 আর 3 দিয়ে 12 কে প্রকাশ করা যাবে না।
এখন আমার প্রশ্ন হচ্ছে প্রাইম নাম্বার কত গুলো আছে? প্রাইম নাম্বার কি অসীম সংখ্যক নাকি এর শেষ আছে? এই কথার উত্তর গনিতবিদ ইউক্লিড শত বছর আগেই অনেক সুন্দর ভাবে দিয়ে গেছেন, আর আজ আমার উদ্দেশ্য এই সুন্দর উত্তরটা আপনাদের কাছে আরেকবার উপস্থাপন করা। চলুন দেখি ইউক্লিডের উত্তর-
ধরা যাক, প্রাইম নাম্বারের শেষ আছে এবং সবচেয়ে বড় আর শেষ প্রাইম নাম্বারটা হল Pn, এখন আমরা এক কাজ করি, Pn সহ এর আগে যত প্রাইম নাম্বার আছে সবগুলো গুন করি, তাহলে ব্যাপারটা হবে এইরকম-
2*3*5*7*11*………………* Pn
এই গুনফলটা নিঃসন্দেহে একটা বড় যৌগিক সংখ্যা এবং সকল প্রাইম নাম্বার দিয়ে বিভাজ্য। এখন এই উপরের গুনফলের সাথে যদি আমরা 1 যোগ করে দেই তাহলে ব্যাপারটা কি হবে?
PL=2*3*5*7*11*………………* Pn+1
অর্থাৎ গুনফলের সাথে 1 যোগ করে সেই সংখ্যাটাকে PL ধরলাম। এই PL সংখ্যাটা Pn থেকে বড় এবং PL কে যেকোনো সংখ্যা দিয়ে ভাগ করলে কিছু না কিছু ভাগশেষ থাকবে কারন এই সংখ্যাটা আসলে সবগুলো প্রাইম নাম্বার দিয়ে তৈরি একটা যৌগিক সংখ্যা থেকেও 1 বেশি। তার মানে PL একটা প্রাইম নাম্বার যেটা আবার থেকে Pn বড়। কিন্তু আমরা Pn কেই সবচেয়ে বড় প্রাইম হিসেবে ধরে নিয়েছিলাম আর এখন দেখলাম PL>Pn। তার মানে হচ্ছে প্রাইম নাম্বারের কোনো শেষ নেই, অসীম সংখ্যক প্রাইম নাম্বার আছে। আজ এতটুকুই, প্রাইম নাম্বার নিয়ে আরো কিছু লেখা নিয়ে পরে দেখা হবে।

অনুগ্রহ করে অপেক্ষা করুন। ছবি আটো ইন্সার্ট হবে।




